Life cycle assessment of non-edible oil crops
(Crambe abyssinica) production

Michał Krzyżaniak

Department of Plant Breeding and Seed Production,
University of Warmia and Mazury in Olsztyn
Energy dependence of EU 28 in 1990, 2000 and 2013 roku (1000 ktoe)

Source: Eurostat 2015
Global warming

CO₂ concentration in the atmosphere - Hawaii’s Mauna Loa observatory

Source: Kerr 2007, ESRL 2012

Loss of 8% of freshwater fish habitat in N. America
- Polar ecosystems increasingly damaged
- Amphibian extinctions increasing on mountains

Temperature change (°C) above preindustrial

Source: Kerr 2007, ESRL 2012
Oil basket price

Source: OPEC 2016
Classical and integrated multiproduct biorefinery approach

Source: EuroBioRef 2014
Crambe abyssinica
Hochst. ex R.E. Fries)

- High content of erucic acid regarded as one of the feedstocks used in modern integrated biorefineries.
- Yield of seeds 1.2-3.2 Mg ha\(^{-1}\).
- Oil content 31-37%, with erucic acid accounting for more than 54% (Kulig and Pisulewska 2000; Laghetti et al. 1995; Lazzeri et al. 1994).
- Production of biodiesel, lubricants, rubber additives, nylon, base for paints and coatings, hydraulic fluids, waxes and other products (Falasca et al. 2010; Wang et al. 2000).
Reason of the study

• The aim of the study was to determine, the impact on the environment of the production process of the crambe, by the life cycle assessment (LCA).
Life Cycle Assessment (LCA)
A tool to assess the environmental impacts of a product, process or activity throughout its life cycle; from the extraction of raw materials through to processing, transport, use and disposal.

- Life Cycle Assessment: How Relevant is it to Australia? M. Demmers and H. Lewis
Methods

Goal and scope

• Simplified, comparative LCA for the production process of the crambe in two variants of production, compared to the cultivation of spring rapeseed.
• Identification of stages with the most negative impact on the environment.

Functional unit

• The impact of the cultivation system on the area (1 ha) was the functional unit adopted in the study.
• However, due to a different yield of seeds, which can be obtained from the same area of cultivation – 1 Mg of seeds of the cultivated plants was adopted as well.
Crambe I:
• No herbicides used
• Desiccant used

Crambe II:
• Herbicides used
• Desiccant used

Spring rape:
• Herbicides used
• Pesticides used
• Desiccant used
Methods

• Calculations were made in the SimaPro 7.3.2 software using CML 2 baseline 2000 method with categories:
 – abiotic depletion,
 – acidification,
 – eutrophication,
 – global warming,
 – ozone layer depletion,
 – human toxicity,
 – freshwater aquatic ecotoxicity,
 – marine aquatic ecotoxicity,
 – terrestrial ecotoxicity,
 – photochemical oxidation.
Results of the characterisation of the *Crambe* I cultivation system

1-abiotic depletion, 2-acidification, 3-eutrophication, 4-global warming (GWP 100), 5-ozone layer depletion (ODP), 6-human toxicity, 7-freshwater aquatic ecotoxicity, 8-marine aquatic ecotoxicity, 9-terrestrial ecotoxicity, 10-photochemical oxidation.
Results of the characterisation of the *Crambe II* cultivation system

1-abiotic depletion, 2-acidification, 3-eutrophication, 4-global warming (GWP 100), 5-ozone layer depletion (ODP), 6-human toxicity, 7-freshwater aquatic ecotoxicity, 8-marine aquatic ecotoxicity, 9-terrestrial ecotoxicity, 10-photochemical oxidation.
Results of the characterisation of the Spring rape cultivation system

1-abiotic depletion, 2-acidification, 3-eutrophication, 4-global warming (GWP 100), 5-ozone layer depletion (ODP), 6-human toxicity, 7-freshwater aquatic ecotoxicity, 8-marine aquatic ecotoxicity, 9-terrestrial ecotoxicity, 10-photochemical oxidation.
Characterisation results for the three cultivation systems under study. Functional unit, area of 1ha.

1-abiatic depletion, 2-acidification, 3-eutrophication, 4-global warming (GWP 100), 5-ozone layer depletion (ODP), 6-human toxicity, 7-freshwater aquatic ecotoxicity, 8-marine aquatic ecotoxicity, 9-terrestrial ecotoxicity, 10-photochemical oxidation.
Characterisation results for the three cultivation systems under study. Functional unit, 1 Mg of seeds.

1-abiotic depletion, 2-acidification, 3-eutrophication, 4-global warming (GWP 100), 5-ozone layer depletion (ODP), 6-human toxicity, 7-freshwater aquatic ecotoxicity, 8-marine aquatic ecotoxicity, 9-terrestrial ecotoxicity, 10-photochemical oxidation.
GHG emission (kg CO$_2$ eq.)

- **Crambe I**
 - **Ploughing**: 5%
 - **Fertilisation PK**: 6%
 - **Fertilisation N**: 74%
 - **Harrowing**: 2%
 - **Sowing**: 4%
 - **Harvest**: 5%
 - Total: 2096 kg/ha, 1839 kg/Mg

- **Crambe II**
 - **Ploughing**: 5%
 - **Fertilisation PK**: 6%
 - **Fertilisation N**: 72%
 - **Sowing**: 4%
 - **Harvest**: 5%
 - **Ploughing**: 5%
 - Total: 2148 kg/ha, 1705 kg/Mg

- **Rapeseed**
 - **Ploughing 2**: 5%
 - **Fertilisation PK**: 8%
 - **Fertilisation N**: 67%
 - **Discing**: 3%
 - **Pestycide 2**: 4%
 - **Sowing**: 4%
 - **Harvest**: 4%
 - Total: 2334 kg/ha, 1297 kg/Mg
Conclusions

• The highest environmental impact in most impact categories was connected with fertilisation (6-7 out of 10 categories).
• Seed production had a considerable impact on the fresh water aquatic ecotoxicity and terrestrial ecotoxicity.
• A comparative LCA with the 1 hectare FU showed that spring rape had the most negative environmental impact in 9 out of 10 categories.
• When 1 Mg of seeds was used as FU spring rape - impact was lower in 9 out of 10 categories comparing to crambe.
• Crambe GHG emission per 1 ha is 9-11% lower comparing to rapeseed but 30-40% higher if FU was changed to 1 Mg of seeds.
• Crambe could be an attractive crop for biorefineries because it provides desirable erucic acid and does not cross-pollinate with 00 rapeseed. However, the environmental impact of the “weak links” in the crambe production: mineral fertilisation and a low yield, should be minimised.
Thank you!

Acknowledgements
The research was funded by the European Union Seventh Framework Programme (FP7/2007- 2013) under grant agreement n°241718 EuroBioRef.

More details can be found in:

Contact:
Michał Krzyżaniak, PhD
University of Warmia and Mazury in Olsztyn, Poland
Department of Plant Breeding and Seed Production
michal.krzyzaniak@uwm.edu.pl
Tel. +48 895246146